RMU1
Installation and Configuration Guide

Print Date:
July 11, 2018
REVISION HISTORY

<table>
<thead>
<tr>
<th>Rev</th>
<th>Start Date</th>
<th>Approval Date</th>
<th>Description</th>
<th>Prepared By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Feb 7, 2014</td>
<td></td>
<td>Original issue.</td>
<td>Tony da Costa</td>
</tr>
<tr>
<td>1.01</td>
<td>Feb 10, 2014</td>
<td></td>
<td>Fixed bond diagram connections.</td>
<td>Tony da Costa</td>
</tr>
<tr>
<td>1.02</td>
<td>Mar 3, 2014</td>
<td></td>
<td>Updates for v1.01 firmware.</td>
<td>Tony da Costa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Jerry Chilibecki</td>
</tr>
<tr>
<td>1.03</td>
<td>Mar 27, 2014</td>
<td></td>
<td>Added regulatory compliance statements.</td>
<td>Tony da Costa</td>
</tr>
<tr>
<td>1.04</td>
<td>Apr 12, 2014</td>
<td></td>
<td>Updated programming interface pictures to match production devices.</td>
<td>Tony da Costa</td>
</tr>
<tr>
<td>1.05</td>
<td>June 10, 2014</td>
<td></td>
<td>Added separate DC/AC coupons measurement mode (v1.04+ firmware).</td>
<td>Tony da Costa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Added datalogger information (v1.04+ firmware).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Added AC mitigation transformer adapter information.</td>
<td></td>
</tr>
<tr>
<td>1.06</td>
<td>Oct 1, 2014</td>
<td></td>
<td>Added additional accessory information.</td>
<td>Tony da Costa</td>
</tr>
<tr>
<td>1.08</td>
<td>May 4, 2015</td>
<td></td>
<td>Added information for RMU1-I variant. Updated input specifications.</td>
<td>Tony da Costa</td>
</tr>
<tr>
<td>1.09</td>
<td>Jan 11, 2016</td>
<td></td>
<td>Added information on AC peak current detector mode. Clarified datalogger operation.</td>
<td>Tony da Costa</td>
</tr>
<tr>
<td>1.10</td>
<td>Mar 21, 2017</td>
<td></td>
<td>Minor clarification to manual depolarization (coupon disconnect) operation.</td>
<td>Tony da Costa</td>
</tr>
<tr>
<td>1.11</td>
<td>May 12, 2017</td>
<td></td>
<td>Added cellular information for regulatory approvals.</td>
<td>Tony da Costa</td>
</tr>
<tr>
<td>1.12</td>
<td>May 25, 2017</td>
<td></td>
<td>Added RMU1PGM-BT information.</td>
<td>Tony da Costa</td>
</tr>
<tr>
<td>1.13</td>
<td>Oct 4, 2017</td>
<td></td>
<td>Added test station flex information. Added RMU1/2/3 programmer description.</td>
<td>Tony da Costa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Added additional parts to accessories table.</td>
<td></td>
</tr>
<tr>
<td>1.14</td>
<td>July 6, 2018</td>
<td></td>
<td>Added Single Coupon + Bond CP39 measurement type (v1.14+ firmware) Updated AC mitigation transformer list.</td>
<td>Tony da Costa</td>
</tr>
</tbody>
</table>
Table of Contents

1. Introduction ... 6
2. General Safety Information ... 7
3. Kit Contents .. 8
 3.1 RMU1-S (Globalstar Simplex Satellite) Kit A20A00RMU10 8
 3.2 RMU1-I (Iridium SBD Satellite) Kit A20A00RMU11 8
 3.3 RMU1-G (LTE Cellular) Kit A20A00RMU12 (USA), A20A00RMU13 (Canada) .. 9
 3.4 RMU1 Optional Installation Items .. 9
4. Quick Bench Test .. 13
5. Installation ... 14
 5.1 Unit Installation ... 14
 5.2 Measurement Type Wiring .. 16
 5.3 Wiring With Flex PCB Equipped Test Station ... 24
 5.4 Isolated Digital Input ... 27
 5.5 Configuration .. 28
 5.6 Startup and Verification .. 28
 5.7 Status Display .. 28
 5.8 Coupon Disconnect .. 30
 5.9 Accessory Installation .. 30
 5.9.1 Test Station Shield for RMU1 – A20100RMU11 30
 5.9.2 Banana Jack Test Point Kit – A20100RMU10 ... 30
 5.9.3 Shield Installation with Banana Jack Test Point Kit 31
6. Configuration Using a PC ... 33
 6.1 Configuration Equipment Requirements ... 33
 6.2 Software Installation ... 34
 6.2.1 Driver Installation .. 34
 6.2.2 Configuration Application Installation .. 36
 6.2.3 Adobe Acrobat Reader XI .. 37
 6.3 RMU1 Configuration ... 37
 6.3.1 RMU1 Communications and Status ... 38
 6.3.1.1 Link Status .. 38
 6.3.1.2 Firmware Version ... 38
 6.3.1.3 Serial# ... 38
 6.3.1.4 Read Config From RMU1 ... 38
 6.3.1.5 Write Config To RMU1 ... 39
 6.3.1.6 Defaults ... 39
 6.3.1.7 Set RMU1 Clock .. 39
 6.3.1.8 Read Faults ... 39
 6.3.1.9 Detailed Status .. 39
 6.3.1.10 Cap Detect Calibration ... 40
 6.3.1.11 Extract Datalogger Mem ... 41
 6.3.1.12 Clear Datalogger Mem .. 41
 6.3.1.13 Test Transmission .. 41
 6.3.1.14 Reboot RMU1 .. 41
 6.3.2 Measurement Type ... 41
 6.3.3 Measurement slots Configuration .. 42
 6.3.4 Depolarization (CP33 and CP38 Measurement Types Only) 42
 6.3.5 Periodic Report Interval .. 42
 6.3.6 Options .. 43
 6.3.7 Readings .. 43
7. Mobile Device Configuration .. 44
8. Battery Replacement ... 47
9. Technical Support .. 49
 A. Equipment Specifications ... 50
 B. RMU1-S Globalstar Simplex Satellite Coverage Map .. 51
 C. RMU1-I Iridium SBD Satellite Coverage Map .. 52
 D. RMU1 Regulatory Statements .. 53
Figures

Figure 1 RMU1 Communications Block Diagram .. 6
Figure 2 CorView All Readings Page .. 13
Figure 3 RMU1 Installation Hardware .. 14
Figure 4 RMU1 Installed In Test Station .. 14
Figure 5 Three Inch Pipe Direct Installation ... 15
Figure 6 Installation Inside NEMA4X Box ... 15
Figure 7 Single Coupon Wiring Diagram (CP33) ... 16
Figure 8 Dual Coupon Wiring Diagram (CP34) ... 17
Figure 9 Single Coupon with AC Mitigation Wiring Diagram (CP35) 18
Figure 10 Bond Wiring Diagram (BOND36) .. 19
Figure 11 Test Point Wiring Diagram (TP37) .. 20
Figure 12 Separate DC and AC Coupons Wiring Diagram (CP38) 21
Figure 9 Single Coupon with DC Bond Wiring Diagram (CP39) 22
Figure 13 RMU1 Measurement Wiring Connections ... 23
Figure 14 Kit With Flex PCB Test Station .. 24
Figure 15 Test Station Flex PCB Connections .. 25
Figure 16 Single Coupon Flex Connections .. 25
Figure 17 Dual Coupon Flex Connections ... 26
Figure 18 Single Coupon w/AC Mitigation Flex Connections .. 26
Figure 19 Bond Flex Connections .. 26
Figure 20 Separate AC/DC Coupons Flex Connections .. 27
Figure 21 Isolated Digital Input Connection Example ... 27
Figure 22 RMU1 Segment LCD and LED Status Indicators .. 28
Figure 23 LCD Enable Magnet Location .. 29
Figure 24 Test Station Shield A20100RMU11 ... 30
Figure 25 Banana Jack Test Point Kit A20100RMU10 .. 31
Figure 26 Shield Installation with Banana Jack Test Point Kit .. 32
Figure 27 RMU1 Programming Interface ... 33
Figure 28 RMU1/2/3 Programmer With RMU1ADP ... 33
Figure 29 RMU1Installer Dialog ... 34
Figure 30 Driver Installation Screen ... 34
Figure 31 Driver Installation - Found New Hardware .. 35
Figure 32 Driver Installation - Install From Specific Location 35
Figure 33 Driver Installation - Driver Location Selection .. 35
Figure 34 Driver Installation - Driver File Search .. 36
Figure 35 RMU1 Configuration Application Installation Dialog 36
Figure 36 RMU1 Configuration Application Installation Complete 36
Figure 37 RMU1 Programming Interface Installation .. 37
Figure 38 RMU1CONFIG Main Screen .. 38
Figure 39 Faults Dialog .. 39
Figure 40 Detailed Status Dialog ... 40
Figure 41 Cap Detect Sensor Calibration Dialog ... 40
Figure 42 RMU1 Cap Proximity Sensor ... 41
Figure 43 RMU1PGM-BT Bluetooth Interface Cable ... 44
Figure 44 RMU1/2/3 Programming Interface With RMU1ADP 44
Figure 45 RMU1PGM-BT USB Battery Pack Charging .. 45
Figure 46 RMU1PGM-BT Connected To Battery Pack and RMU1 45
Figure 47 iOS App Sample Screenshots .. 46
Figure 48 RMU1-S (RMU1-G similar) Transmitter Board Screws 47
Figure 49 RMU1-I Transmitter Board Screws ... 47
Figure 50 Battery Polarity Markers .. 48
Figure 51 Globalstar Simplex Satellite Coverage Map .. 51
Tables

Table 1 RMU1-S Kit Contents .. 8
Table 2 RMU1-I Kit Contents .. 8
Table 3 RMU1-G Kit Contents .. 9
Table 4 RMU1 Accessories .. 12
Table 5 Description of Special LCD Icons ... 29
1 Introduction

The RMU1 Remote Monitoring Unit is part of the Mobiltex Data Ltd. corTalk® family of cathodic monitoring and control products. Mobiltex Data Ltd. was formed in 1985 and specializes in the design and manufacture of high reliability, industrial mobile data systems for the communications, transportation and utility markets. Mobiltex has been providing solutions for the cathodic monitoring industry since 1991.

The RMU1 is a low cost, high reliability device intended to monitor coupons and bonds. The device is available in two satellite (RMU1-S and RMU1-I) and one cellular (RMU1-G) communication configurations. The field hardware consists of a single component that is usually mounted inside a plastic test station. The device operates for 10+ years from internal, low cost, field replaceable batteries. This self-powered solution can be used to monitor coupons and bonds without the requirement for nearby line or solar power sources. The RMU1 has integral high-energy surge suppression and provides unprecedented lightning immunity because there are no connections to electrical ground.

The RMU1 monitors and transmits eight channels of information. An integral IR proximity sensor can be used as a cap open sensor or tamper detection alarm. The RMU1 measures temperature and internal battery voltage. A user accessible magnetic switch allows the transmission of uniquely identified messages that can be used to record site visit information.

Measurement data is wirelessly transmitted to the Mobiltex corView servers. CorView manages all field data communications, maintains three years of measurement data, sends alarm exception and system performance emails, and provides password protected remote customer access. With the proper credentials, corView can be accessed using an Internet Explorer web browser. The measurement data is presented in an intuitive tabular format or graphical mapping display that color-codes abnormal measurement or site conditions for quick user interpretation. CorView can also provide near real-time email notification of abnormal measurement and alarm conditions.

![RMU1 Communications Block Diagram](image)

Figure 1 RMU1 Communications Block Diagram
2 General Safety Information

The following safety precautions must be reviewed to avoid injury and prevent damage to this product or any products connected to it. To avoid potential hazards, use this product only as specified. If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Only qualified personnel should perform service procedures.

While using this product, you may need to access other parts of a larger system. Read the safety sections of the other component’s manuals for warnings and cautions related to operating the system.

To Avoid Fire or Personal Injury

Connect and Disconnect Properly. Do not connect or disconnect terminal wiring while the wires are connected to a voltage source.

Observe All Terminal Ratings. To avoid fire or shock hazard, observe all ratings and markings on the product. Consult the product manual for further ratings information before making connections to the product. Do not use an input marked with measurement category I for measurements within measurement categories II, III or IV. Do not connect category II inputs directly to mains—a Class 2 CSA/UL transformer must be used for isolation.

Do Not Operate Without Covers. Do not operate this product with covers or panels removed.

Avoid Exposed Circuitry. Do not touch exposed connections and components when power is present.

Do Not Operate With Suspected Failures. If you suspect there is damage to this product, have it inspected by qualified service personnel.

Do Not Operate in Wet/Damp Conditions.

Keep Internal Product Surfaces Clean and Dry.

Symbols and Terms

Terms in this Manual. These terms may appear in this manual:

WARNING. Warning statements identify conditions or practices that could result in injury or loss of life.

CAUTION. Caution statements identify conditions or practices that could result in damage to this product or other property.

Terms on the Product. These terms may appear on the product:

DANGER. Danger indicates an injury hazard immediately accessible as you read the marking.

WARNING. Warning indicates an injury hazard not immediately accessible as you read the marking.

CAUTION. Caution indicates a hazard to property including the product.

Symbols on the Product. The following symbols may appear on the product:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>CAUTION</td>
</tr>
<tr>
<td>⊘</td>
<td>Protective Ground (Earth) Terminal</td>
</tr>
<tr>
<td>⬤</td>
<td>Functional Ground Terminal</td>
</tr>
<tr>
<td>℮</td>
<td>AC or DC Input</td>
</tr>
</tbody>
</table>
3 Kit Contents

3.1 RMU1-S (Globalstar Simplex Satellite) Kit A20A00RMU10

<table>
<thead>
<tr>
<th>Kit Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 pc – RMU1-S remote monitoring unit.</td>
</tr>
<tr>
<td>Typically installed inside a test station.</td>
</tr>
<tr>
<td>Mobiltex Part Number A15000RMU10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 pc – ½” #6-32 screw</th>
</tr>
</thead>
<tbody>
<tr>
<td>This item comes pre-attached to a mating nut in the RMU1 unit.</td>
</tr>
<tr>
<td>Mobiltex Part Number H013120500S</td>
</tr>
</tbody>
</table>

Table 1 RMU1-S Kit Contents

3.2 RMU1-I (Iridium SBD Satellite) Kit A20A00RMU11

<table>
<thead>
<tr>
<th>Kit Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 pc – RMU1-I remote monitoring unit.</td>
</tr>
<tr>
<td>Typically installed inside a test station.</td>
</tr>
<tr>
<td>Mobiltex Part Number A15000RMU11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 pc – ½” #6-32 screw</th>
</tr>
</thead>
<tbody>
<tr>
<td>This item comes pre-attached to a mating nut in the RMU1 unit.</td>
</tr>
<tr>
<td>Mobiltex Part Number H013120500S</td>
</tr>
</tbody>
</table>

Table 2 RMU1-I Kit Contents
3.3 RMU1-G (LTE Cellular) Kit A20A00RMU12 (USA), A20A00RMU13 (Canada)

1 pc – RMU1-G remote monitoring unit.
Typically installed inside a test station.
Mobiltex Part Number A15000RMU12 (USA)
Mobiltex Part Number A15000RMU13 (Canada)

1 pc – ½” #6-32 screw
This item comes pre-attached to a mating nut in the RMU1 unit.
Mobiltex Part Number H013120500S

Table 3 RMU1-G Kit Contents

3.4 RMU1 Optional Installation Items

RMU1 Wiring Kit
24 cm (10 in.) wiring harness with factory installed ¼” ring terminals, assorted extra crimp terminals, cable ties. The components of this kit are typically used to interconnect the measurement signals from the coupon or bond test station to the RMU1.
Mobiltex Part Number A20103RMU10

Replacement Battery Pack
Kit of 4 AA batteries for maintenance purposes
Mobiltex Part Number B02221RMU10

RMU1PGM Programming Interface
Mobiltex Part Number A15000RMU1P
For use with a PC only. White USB cable.
No longer available. Replaced by A20A0332701.

RMU1PGM-BT Programming Interface Kit
Mobiltex Part Number A20A0332701
Capable of Bluetooth communications with a phone/tablet. Can also be used with a PC through the USB connection. Black USB cable. Kit includes a carrying case and portable USB battery pack.
<table>
<thead>
<tr>
<th>Image</th>
<th>Description</th>
<th>Part Number</th>
<th>Notes</th>
</tr>
</thead>
</table>
| ![Image](RMU1ADP.png) | RMU1ADP RMU2/3 Programmer Adapter
Mobiltex P/N A1506033001
Allows an existing RMU2/3 Programming Interface to be used with RMU1 devices. | RMU1ADP | |
| ![Image](RMU123BT.png) | RMU1/2/3-BT Programmer Kit
Mobiltex P/N A20A0333101
Universal programming kit for RMU1, RMU2, and RMU3 devices. Includes RMU1/2/3 base programmer (A1506033101), RMU1ADP (A1506033001), LiIon battery pack, soft case and USB stick with programming software. Capable of Bluetooth communications with a phone/tablet. Can also be used with a PC through the USB connection. | RMU1/2/3-BT | |
| ![Image](TestMagnet.png) | Test Magnet
Mobiltex Part Number H00000MAG04 | Test Magnet | |
| ![Image](RMU1TestStation.png) | Modified RMU1 Replacement Lid For Direct Installation In 3” Pipe
Mobiltex Part Number H23390RMU02
Only for RMU1S or RMU1G. | RMU1TestStation | |
| ![Image](SpacerRing.png) | Spacer Ring For 3” Test Stations
Mobiltex Part Number H23510RMU01 (Black)
Mobiltex Part Number H23530RMU01 (Orange)
Mobiltex Part Number H23540RMU01 (Yellow)
Mobiltex Part Number H23550RMU01 (Green)
Mobiltex Part Number H23590RMU01 (White)
Mobiltex Part Number H23560RMU01 (Blue)
Mobiltex Part Number H235A0RMU01 (Red) | Spacer Ring | |
| ![Image](TestStation.png) | Test Station with 5 plated screws and top cover (Pro-Mark)
Mobiltex Part Number A20A03RMU10 (Orange)
Mobiltex Part Number A20A03RMU11 (Yellow)
Mobiltex Part Number A20A03RMU12 (Green)
Mobiltex Part Number A20A03RMU13 (White)
Mobiltex Part Number A20A03RMU17 (Blue)
Mobiltex Part Number A20A03RMU16 (Red) | Test Station | |
<table>
<thead>
<tr>
<th>Image</th>
<th>Description</th>
</tr>
</thead>
</table>
| ![Image](image1.jpg) | Lockable bracket for Pro-Mark test station. (Padlock & test station not included)
Mobiltex Part Number A20B03RMU10 |
| ![Image](image2.jpg) | Lockable NEMA4X Enclosure
6.75”W x 7.5”H x 5.5”D (171mm x 190mm x 140mm)
Comes with RMU1 bracket.
Mobiltex Part Number A03700RMU10 |
| ![Image](image3.jpg) | Adapter assembly for use with separate DC and AC coupon mode. Integral 10 ohm shunt resistor.
Mobiltex Part Number A04060296A1 |
| ![Image](image4.jpg) | Large opening (36mm/1.42”) AC mitigation measurement transformer. 126A AC full scale.
1.57” x 1.63” x 2.64”(40mm x 41.4mm x 67mm)
Includes 3.3’(1m) leads.
Mobiltex Part Number T01252RMU04 |
| ![Image](image5.jpg) | Medium opening (24mm/0.94”) AC mitigation measurement transformer. 42A AC full scale.
1.34” x 2” x 2.64”(34mm x 51mm x 67mm)
Includes 3.3’(1m) leads.
Mobiltex Part Number T01252RMU02 |
| ![Image](image6.jpg) | Small opening (15.2mm/0.60”) AC mitigation measurement transformer. 31A AC full scale.
1.22” x 1.26” x 1.81”(31mm x 32mm x 46mm)
Includes 3.3’(1m) leads
Mobiltex Part Number T01252RMU03 |
| ![Image](image7.jpg) | Electrical isolation shield.
Prevents accidental user contact with exposed test station termination screws.
Mobiltex Part Number A20100RMU11 |
Banana jack test point kit.
Replaces standard test point termination screws to provide banana jack functionality. Kit contains 5 replacement screws, washers and nuts.
Mobiltex Part Number A20100RMU10

Test station with banana jack test points and shield.
Kit consists of an orange test station (A20A03RMU10), 5 installed banana jack test point screws (A20100RMU10), and a drilled test station shield (A20100RMU11). The components are factory installed in the configuration shown. Alternative custom configurations are available for purchases of 100+ units.
Mobiltex Part Number A20A03RMU14

Test station with RMU1-to-test-station flex PCB
Connects the RMU1 6-pin connector directly to the test station bolts.
Mobiltex P/N A03A00RMU01 (Orange with 8 bolts)
Mobiltex P/N A03A00RMU02 (Orange with 5 banana jack bolts)

Separate AC/DC Coupon Board For Test Station With Flex PCB
10 Ohm shunt and link PCB allowing use of separate AC/DC coupons with test station flex PCB.
Mobiltex P/N A20A0333401

| Table 4 RMU1 Accessories |
4 Quick Bench Test

1. For the RMU1-S or RMU1-I, locate the RMU1 outdoors with a clear view (120 degrees in all directions is optimum) of the sky and with the top dome with the molded corTalk® logo of the device facing upwards towards the sky. RMU1-I battery life will be significantly impacted by poor sky views since communication with the satellite constellation is attempted and re-attempted until the satellite system acknowledges the transmission. The RMU1-G cellular antenna, located in the top dome area, requires a clear communications path to a cellular tower; optimal orientation will be site dependent.

2. Power on the RMU1 by twisting the lid clockwise until a switch click is heard. The LCD display will display “Init” (if programmer is attached) briefly followed by “bSY” for several seconds. The lid should be rotated an additional 1/2 turn after the switch click is heard in order to fully engage the sealing gasket.

3. If the GPS receiver is enabled in the configuration (for the RMU1-S, the GPS is always enabled at power-up), the RMU1 will display the ‘GPS’ icon on the LCD display and also show a number in the format of ‘X.YY’ where X is the number of satellites being received and YY is the average signal strength of those satellites. The RMU1 will not send a power-up message or display measurements on the LCD screen until GPS signal acquisition is complete.

4. The corTalk host is accessed using a web browser at https://corview.cortalk.com. Enter the User Name and Password that were provided to you when your corView account was setup.

5. Upon successful login to corView you will be presented with an “All Readings” screen that will display the readings for all your RMU device(s). You should see a status of “New Unit” or “Power Up” along with the readings from the device that you just connected.

Note that transmissions from field devices typically require from <1 minute (good antenna view of the sky) to 30 minutes (poor antenna view of the sky) to arrive at corView. The displayed measurement screen on corView will refresh automatically every 5 minutes. If you wish to see more immediate readings, simply click on the refresh button (typically F5) in your browser.

CorView can be configured to automatically send emails containing the measurement readings to an individual or group of email users. Because these emails are short and wireless-friendly, many clients send the readings directly to their field installer’s wireless email device(s) for near immediate end-to-end operation confirmation and verification of measurement values.

![CorView All Readings Page](image)

Figure 2 CorView All Readings Page

6. Pressing a magnet against the area marked “TEST” on the RMU1 will force an immediate analog measurement and data transmission.

7. After the device has transmitted the measurements, corView should display a new status of “Button Press” along with the associated analog readings for the device.

8. When the bench test is completed, simply loosen the cap on the RMU1 by twisting counter-clockwise until a switch click is again heard. This action forces the RMU1 device to power down. Rotate the lid an additional 1/2 turn to ensure the device remains powered down.
5 Installation

Warning: Only properly qualified personnel should work on installation of this equipment. Company and industry safety procedures must be followed.

Installation consists of three steps: unit installation, wiring, and device configuration.

5.1 Unit Installation

![Image of RMU1-S/RMU1-G, RMU1-I, #6 Screw]

Figure 3 RMU1 Installation Hardware

The RMU1 may be installed inside an industry standard test station, or with an optional cap, directly onto a 3” PVC pipe. To accommodate a standard test station, a spacer ring is required to raise the test station cap enough to allow the RMU1-S or RMU1-G to fit; for the RMU1-I, two spacer rings are needed. The spacer ring attaches to the threaded portion of the lower test station mount. With specialized cover locking systems or for other special test station installations, it may also be possible to cut off part of the test station terminal board to make room for the RMU1; in that case the spacer ring would not be needed.

![Image of RMU1 Installed In Test Station]

Figure 4 RMU1 Installed In Test Station
Figure 5 Three Inch Pipe Direct Installation

Figure 6 Installation Inside NEMA4X Box
5.2 Measurement Type Wiring

The RMU1 can be wired in several different pre-defined configurations for single coupon, dual coupon, separate AC and DC coupons, and bond monitoring. The diagrams in the following pages illustrate typical installations for each measurement type. Each measurement type diagram contains a table indicating the six measurement points (Slots) that are transmitted to the corView server.

Note that for pipe-to-soil measurements, as shown in the installation diagrams, the readings sent to corView will be negative. Also note that the RMU1 measurement inputs must not be directly connected to mains AC power.

The following ranges apply to measured signals:

- **Potential:** +/-31VDC, 22VAC
- **Coupon Current:** +/-6mADC, 4.25mAAC (Low Range)
 +/-60mADC, 42.5mAAC (Med Range)
 +/-200mADC, 140mAAC (High Range)
- **Bond Shunt:** +/-6mVDC, 4.25mVAC (Low Range)
 +/-60mVDC, 42.5mVAC (Med Range)
 +/-200mVDC, 140mVAC (High Range)

Figure 7 Single Coupon Wiring Diagram (CP33)

<table>
<thead>
<tr>
<th>DATA SLOT</th>
<th>DESCRIPTION</th>
<th>LCD ICONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Coupon DC Potential</td>
<td>COUPON DC V</td>
</tr>
<tr>
<td>2</td>
<td>Coupon AC Potential</td>
<td>COUPON AC V</td>
</tr>
<tr>
<td>3</td>
<td>Coupon Instant Disconnect DC Potential</td>
<td>COUPON INSTANT DISCONNECT DC V</td>
</tr>
<tr>
<td>4</td>
<td>Coupon AC Current Density</td>
<td>COUPON CURRENT AC A/m²</td>
</tr>
<tr>
<td>5</td>
<td>Coupon DC Protection Current</td>
<td>COUPON CURRENT DC A/m²</td>
</tr>
<tr>
<td>6</td>
<td>Depolarized Coupon DC Potential</td>
<td>COUPON DEPOLARIZED DC V</td>
</tr>
</tbody>
</table>

RMU1 Single Coupon
Figure 8 Dual Coupon Wiring Diagram (CP34)
Figure 9 Single Coupon with AC Mitigation Wiring Diagram (CP35)

With this type of installation, a scaling factor must be entered for the AC mitigation slot in the RMU1 configuration. The scaling factor is dependent on the transformer and the burden/divider resistors. For Mobiltex supplied transformer kits, the required slot scale factor is printed on the transformer assembly. The slot input range must be set to ‘HIGH’ in the RMU1 configuration.
RMU1 Bond

<table>
<thead>
<tr>
<th>DATA SLOT</th>
<th>DESCRIPTION</th>
<th>LCD ICONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P/S1 DC Potential</td>
<td>P/S1 DC VOLTS</td>
</tr>
<tr>
<td>2</td>
<td>P/S1 AC Potential</td>
<td>P/S1 AC VOLTS</td>
</tr>
<tr>
<td>3</td>
<td>P/S2 DC Potential</td>
<td>P/S2 DC VOLTS</td>
</tr>
<tr>
<td>4</td>
<td>P/S2 AC Potential</td>
<td>P/S2 AC VOLTS</td>
</tr>
<tr>
<td>5</td>
<td>Bond DC Current</td>
<td>BOND DC A</td>
</tr>
<tr>
<td>6</td>
<td>Bond AC Current</td>
<td>BOND AC A</td>
</tr>
</tbody>
</table>

Figure 10 Bond Wiring Diagram (BOND36)
RMU1 Test Point

<table>
<thead>
<tr>
<th>DATA SLOT</th>
<th>DESCRIPTION</th>
<th>LCD ICONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P/S1 DC Potential</td>
<td>P/S1 DC VOLTS</td>
</tr>
<tr>
<td>2</td>
<td>P/S1 AC Potential</td>
<td>P/S1 AC VOLTS</td>
</tr>
<tr>
<td>3</td>
<td>P/S2 DC Potential</td>
<td>P/S2 DC VOLTS</td>
</tr>
<tr>
<td>4</td>
<td>P/S2 AC Potential</td>
<td>P/S2 AC VOLTS</td>
</tr>
<tr>
<td>5</td>
<td>DC Current</td>
<td>DC A</td>
</tr>
<tr>
<td>6</td>
<td>AC Current</td>
<td>AC A</td>
</tr>
</tbody>
</table>

Figure 11 Test Point Wiring Diagram (TP37)
RMU1 Separate DC and AC Coupons

<table>
<thead>
<tr>
<th>DATA SLOT</th>
<th>DESCRIPTION</th>
<th>LCD ICONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Coupon DC Potential</td>
<td>COUPON DC V</td>
</tr>
<tr>
<td>2</td>
<td>Coupon AC Potential</td>
<td>COUPON AC V</td>
</tr>
<tr>
<td>3</td>
<td>Coupon Instant Disconnect DC Potential</td>
<td>COUPON INSTANT DISCONNECT DC V</td>
</tr>
<tr>
<td>4</td>
<td>Coupon AC Current Density</td>
<td>COUPON CURRENT AC A/m²</td>
</tr>
<tr>
<td>5</td>
<td>Coupon DC Protection Current</td>
<td>COUPON CURRENT DC A/m²</td>
</tr>
<tr>
<td>6</td>
<td>Depolarized Coupon DC Potential</td>
<td>COUPON DEPOLARIZED DC V</td>
</tr>
</tbody>
</table>

Figure 12 Separate DC and AC Coupons Wiring Diagram (CP38)

When using separate DC and AC coupons with the RMU1, an adapter board must be used. This adapter board contains a precision shunt resistor and provides a terminal block for connections to the coupons, structure and reference cell. The shunt is a 10 ohm resistor; this shunt resistance must be used in the coupon calculator in the RMU1 configuration application to obtain correct readings.
RMU1 Single Coupon w/DC Bond

<table>
<thead>
<tr>
<th>DATA SLOT</th>
<th>DESCRIPTION</th>
<th>LCD ICONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Coupon DC Potential</td>
<td>COUPON DC V</td>
</tr>
<tr>
<td>2</td>
<td>Coupon AC Potential</td>
<td>COUPON AC V</td>
</tr>
<tr>
<td>3</td>
<td>Coupon Instant Disconnect DC Potential</td>
<td>COUPON INSTANT DISCONNECT DC V</td>
</tr>
<tr>
<td>4</td>
<td>Coupon AC Current Density</td>
<td>COUPON CURRENT AC A/m²</td>
</tr>
<tr>
<td>5</td>
<td>Coupon DC Protection Current</td>
<td>COUPON CURRENT DC A/m²</td>
</tr>
<tr>
<td>6</td>
<td>Bond DC Current</td>
<td>BOND DC A</td>
</tr>
</tbody>
</table>

Figure 13 Single Coupon with DC Bond Wiring Diagram (CP39)
The programmed “Measurement Type” will determine the signals monitored and the associated wiring connection requirements. Wire the appropriate measurement signals from the coupon or bond to the terminal block on the RMU1. The green terminal block is pluggable; it may be easier to remove it from the RMU1 while wiring. Strip ¼" (6mm) of insulation off the end of each measurement wire before inserting the wire into the terminal block. Use a small Philips-style or flat blade screwdriver to tighten the connector clamps to the measurement wiring.

Unused analog input channels should be disabled using the programming interface.

An optional wiring kit (A20103RMU10), containing factory installed crimp terminals, wiring and cable ties, is optionally available. Electrical connections to the RMU1 can be made using direct wire connections (22 to 14 AWG wire size. Lightning immunity is enhanced by utilizing 600 volt, 105C rated wiring (as supplied with the optional wiring kit) which has a thicker insulation system and higher voltage breakdown rating as compared to more common 300 volt rated wiring systems.

![RMU1 Measurement Wiring Connections](image)

Figure 14 RMU1 Measurement Wiring Connections
5.3 Wiring With Flex PCB Equipped Test Station

As an optional accessory, a standard test station equipped with a flex PCB that connects the RMU1 6-pin connector directly to the test station bolts is available. All measurement sources are then connected directly to the test station bolts.

Mobiltex part number **A20A04RMU01** and **A20A04RMU02** are special kit configurations utilized for the monitoring of coupons, bonds or test points. The kits consist of the following items:

A20A04RMU01
- 1pc A20A00RMU10 RMU1-S Remote Monitoring Unit for Test Stations & Coupons - Satellite 1-way
- 1pc H23530RMU01 Spacer to raise test station cap to allow RMU1 to fit inside standard test station – ORANGE

Or

A20A04RMU02
- 1pc A20A00RMU11 RMU1-I Remote Monitoring Unit for Test Stations & Coupons - Satellite 2-way Iridium
- 2pcs H23530RMU01 Spacer to raise test station cap to allow RMU1 to fit inside standard test station – ORANGE

And
- 1pc Test Station with 8 plated screws and top cover – ORANGE
- 1pc Mobiltx FLEX3B custom interconnection Flex circuit assembly installed in above test station
- 1pc Mobiltx SLD1A France shield board
- 1pc A20100RMU11 Rear Test Station shield for use with RMU1. Prevents user contact with test station bolts.

The following pictures illustrate the kit:

![Complete unit with cover installed](image1)
![Cover removed – front view](image2)
![Cover removed – side view](image3)
![Cover removed – rear view](image4)
![Kit components – pre-installed in the test station](image5)
![Rear safety shield removed](image6)
![Front shield and Flex circuit](image7)

Figure 15 Kit With Flex PCB Test Station
Internally, the flex PCB connects the RMU1 to the test station bolts as shown here:

Figure 16 Test Station Flex PCB Connections

The following figures illustrate the necessary connections for each RMU1 measurement type.

Figure 17 Single Coupon Flex Connections
External links between bolts 6-9 and 5-8 are needed. An external shunt resistor between bolts 5 and 6 is also needed.
External links between bolts 6-8 and 4-5 are needed. An external 10 ohm shunt resistor between bolts 5 and 6 is also needed. Alternatively, CPN3A (Mobiltex P/N A20A0333401) can be installed as shown in the figure above; this board contains the necessary links and resistor.

5.4 Isolated Digital Input

When enabled in the configuration, an isolated digital input is present on the pins labelled ‘BOND-/MIT AC’ and ‘BOND+/MIT AC’. The input is bidirectional (polarity insensitive); an input signal with a magnitude greater than 3VDC will change the input to the active state. The digital input state may replace the transmission value for any data slot or the cap detector state by setting the appropriate options in the RMU1 configuration.

The isolated input may be used to monitor a dry set of contacts by wiring the contacts in series with an external power supply. See Figure 22 for a connection example. Other electronically switched voltage sources may also be used.

Note that when using the isolated digital input, the analog measurement capability, for any measurement type slots that normally use the associated connector pins, will be disabled.

Figure 21 Separate AC/DC Coupons Flex Connections

Figure 22 Isolated Digital Input Connection Example
5.5 Configuration

Once the coupon or bond is wired according to one of the diagrams, the measurement type, current shunt/transformer scaling factors (if used), and alarm limits (if used) should be programmed into the RMU1 using the RMU1PGM configuration tool (see section 6).

5.6 Startup and Verification

All wiring should be secured and inspected before the RMU1 is powered on. The RMU1 will start operation when the lid is screwed down. The lid should be turned an additional ½ turn after the switch click is heard in order to fully engage the sealing gasket.

After the RMU1 is powered, observe that the RMU1 “Status” LCD indicator turns on (refer to section 5.7 for detailed LCD operation descriptions). If the GPS receiver is enabled in the configuration, the RMU1 will display the ‘GPS’ icon on the LCD display and also show a number in the format of ‘X.YY’ where X is the number of satellites being received and YY is the average signal strength of those satellites. The RMU1 will not send a power-up message or display measurements on the LCD screen until GPS signal acquisition is complete.

Note that transmissions from RMU1-S field devices typically require from <1 minute (good antenna view of the sky) to 30 minutes (poor antenna view of the sky) to arrive at corView. The delivery variability is because the RMU1-S transmits the message a total of three times (for airtime plans with periodic reporting intervals greater than 6 hours) to help insure a high message delivery success rate, even under partially degraded sky view conditions. The first transmission occurs within seconds of the measurement cycle. Each of the two retransmissions occurs between 5 and 10 minutes of the prior transmission. Transmissions from RMU1-I and! RMU1-G devices should be received usually in less than one minute. If the RMU1 programming interface is attached to the RMU1 at power-up, the power-up message will be delayed by 5 minutes.

Place a magnet at the point labelled “TEST” on the RMU1 for between 1s and 5s to initiate an immediate measurement cycle and “Button Press” exception transmission to the corView web host. Note that a maximum of 6 “Test” transmissions are allowed during a 12-hour period. Test transmissions are only possible after the initial RMU power-up message has been sent to corView.

The actual measurement readings from the site should appear on corView shortly after the message was transmitted. CorView can be configured to automatically send emails containing the measurement readings to an individual or group of email users. Because these emails are short and wireless-friendly, many clients send the readings directly to their field installers wireless email device(s) for near immediate end-to-end operation confirmation and verification of measurement values. Alternatively, the measurement readings can be locally retrieved and displayed using the RMU1PGM configuration tool. It is good practice to confirm that all the measurements are as expected and that they are not too close to any programmed alarm limits (if utilized).

The installation and site should be inspected a final time before properly securing the equipment and leaving the site.

5.7 Status Display

![Image of RMU1 Segment LCD and LED Status Indicators]

The RMU1 has a segmented LCD display and two LED indicators (A and B, see Figure 23) that provide status information to the user. The LCD and LEDs function as follows:

- The LED indicators are currently only used by the firmware loader function. They should remain off during normal operation.
The LCD display is used to convey measurement value data and other status information. A relay icon indicates when the coupon is connected/disconnected from the structure. Additional icons indicate operation of the internal GPS receiver, transmitter activity, battery low status, and fault status. The numeric display will cycle through all enabled measurement slots with a new slot shown approximately every three seconds. The LCD display is active when the proximity sensor detects that the test station cap has been removed or when the programming interface is attached to the unit. If the proximity sensor is not enabled, the LCD will only display for the first minute after the unit is powered on. To enable the LCD display in this case, place the test magnet in the location shown in Figure 24.

Figure 24 LCD Enable Magnet Location

- For details on icons displayed with each measurement, refer to section 5.2.
- A maximum magnitude of 1999 can be shown by the 3.5 digit display. Any values larger will be shown as ‘OVR’.
- The following special icons are shown:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coupon relay is closed. Pipe terminal is connected to coupon terminal.</td>
</tr>
<tr>
<td></td>
<td>Coupon relay is open. Pipe terminal is disconnected from coupon terminal.</td>
</tr>
<tr>
<td></td>
<td>Communications antenna is enabled. For the cellular or Iridium satellite version of the RMU1, an ‘X’ is shown through the antenna symbol if there is no coverage available.</td>
</tr>
<tr>
<td></td>
<td>Communications antenna is transmitting.</td>
</tr>
<tr>
<td></td>
<td>GPS receiver is powered on and acquiring position and time information.</td>
</tr>
<tr>
<td></td>
<td>Currently unused. Reserved for use in future firmware updates.</td>
</tr>
<tr>
<td></td>
<td>A fault condition exists. Use the RMU1 configuration software to retrieve further details.</td>
</tr>
<tr>
<td></td>
<td>The RMU1 batteries are low in capacity and should be changed at first opportunity.</td>
</tr>
</tbody>
</table>

Table 5 Description of Special LCD Icons
5.8 Coupon Disconnect

The internal coupon to pipe connection relay may be manually placed into a disconnect state for single coupon measurement types. Place a magnet over the test switch area for a duration longer than 5s to initiate this function. The LCD display will then show that the coupon relay has opened; in addition to the open switch symbol, the reading area will display ‘- [] -’ while the function is enabled. Re-apply the magnet to the test switch for an additional 5s to reconnect the coupon relay. The coupon relay will also automatically reconnect at the next wakeup interval of the RMU1.

The coupon disconnect cannot be toggled if the RMU1 is currently performing a depolarization cycle. Note also that this function is only operational if the “Enable Depolarization” option is enabled in the unit configuration.

5.9 Accessory Installation

5.9.1 Test Station Shield for RMU1 – A20100RMU11

This section details the corTalk® test station shield for use with the RMU1 remote monitor. The shield provides electrical isolation intended to prevent users from contacting the exposed termination screws of a test station. Kit part number A20100RMU11 consists of a custom molded shield with integral mounting screw. The test station is not included with this kit. The shield is installed on the test station securing the RMU1 using the integral Philips head screw.

![Test Station Shield A20100RMU11](image)

Figure 25 Test Station Shield A20100RMU11

The inside surface of the shield has 16 recessed circular locations that act as pilot drill locations to provide access to optional banana jack test point screws available in kit part number A20100RMU10. The bottom portion of the cover has a recessed line that can be used as a cutting guide to remove the bottom portion of the cover for use in short test station applications.

5.9.2 Banana Jack Test Point Kit – A20100RMU10

This section details the corTalk® banana jack test point kit. Kit part number A20100RMU10 contains 5 banana jack test point ¼” screws, 10 fiber washers, 10 ¼” nuts and 5 ¼” lock washers. These screws provide an electrical termination point and the center of the screw includes a receptacle that accepts a standard test lead banana plug. These banana jack test point screws replace the standard solid core ¼” screws utilized in most North American industry standard 3” test stations. Additional kits are required for test station installations requiring more than 5 termination points.
The field installation process requires removal of the existing solid core ¼” screws present in the industry standard 3” test station. The banana jack test point screws are then installed in the desired hole locations of the test station. A fiber washer should be installed on the two surfaces that contact the plastic mounting surface of the test station. A ¼” nut is used to secure the banana jack test point screw and two fiber washers to the test station. The remaining ¼” nut and lock washer are used to secure the wiring termination. An optional test station shield (A20100RMU11) can be installed to provide electrical isolation intended to prevent users from contacting the exposed termination screws of the test station.

5.9.3 Shield Installation with Banana Jack Test Point Kit

The test station shield (A20100RMU11) can be utilized with the banana jack test point kit (A20100RMU10) to provide an electrically isolated enclosure with banana jack test lead access. The prior section details installation of the banana jack test point kit. For this application banana plug access holes need to be drilled into the test station shield. The inside surface of the shield has 16 recessed circular locations that act as pilot drill locations to provide access to the banana jack test point screws. Drill a 3/16” (4.5mm) hole in each location that banana jack test point access is required. The drilled shield is then installed on the test station securing the RMU1 using the Philips head screw.
Figure 27 Shield Installation with Banana Jack Test Point Kit
6 Configuration Using a PC

6.1 Configuration Equipment Requirements
The following items will be needed when configuring an RMU1.

1. RMU1 Programming Interface (A15000RMU1P or A20A0332701) or RMU1/2/3 Programming Interface with RMU1ADP (Kit A20A0333101)
 The RMU1 programming interface is shown in Figure 28. It has one cable exiting, a USB cable that attaches to a PC. The interface is powered from the PC USB port, so an external power supply is not required. USB cable color may be either white (A15000RMU1P) or black (A20A0332701).
 The RMU1/2/3 programming interface and RMU1ADP adapter are shown in Figure 29. The RMU1ADP cable is plugged into circular connector on the RMU1/2/3 programming interface labelled ‘TO RMU1/2/3 BASE’. The interface is powered from the PC USB port, so an external power supply is not required.

2. Programming Application and Driver CD or USB Key
 To use the programming interface, you will require the CD or USB key that shipped with the programming interface box. The CD contains drivers and an application for the RMU1 programming interface. If you do not have the media, the contents can be downloaded from the Mobiltex support site. Contact your Mobiltex representative for download instructions.

3. Personal Computer (PC)
 The application software and drivers require that the PC be running Windows 7 or higher for an operating system. The PC must have an available USB port.
6.2 Software Installation

To install the configuration application and driver software, insert the media that came with the programming interface into the CD drive or USB port on the PC. If “autorun” is enabled on the PC, the following screen in Figure 30 will appear.

If “autorun” is not enabled, or the contents of the media have been copied to a local directory, use Windows Explorer to navigate to the drive and directory containing the installation software. Double-click on the “RMUINSTALLER.exe” application. The dialog on Figure 30 will appear.

![RMU1 Installer Dialog](image)

Figure 30 RMU1 Installer Dialog

6.2.1 Driver Installation

From the RMU1 Installer screen, click the “Install RMU Programming Interface Drivers” button. **Note that to install drivers, you must be logged into the PC with an account that has administrative privileges.** The following screen should display. Follow the installation instructions presented by the driver installer application.

![Driver Installation Screen](image)

Figure 31 Driver Installation Screen

Once the driver installer completes, you may then plug in the RMU1 programming interface hardware into an available USB port on the PC.

As an alternative method, the drivers may be installed using the Windows “Found New Hardware Wizard” by plugging the RMU1 programming interface into the PC first. If the “Found New Hardware Wizard” does not appear, it is possible that drivers for the programming interface are already installed. Complete the following steps:
From the three choices, select the “No, not this time” radio button and click “Next >”.

The following screen will ask you if you would like to install the software automatically or from a specific location.

Choose to install from a specific location since you have the installation CD, USB key or downloaded files. Click the “Next >” button.

The next window will appear and ask you where to search for the drivers. The default selection is shown in Figure 34.

Insert the CD or USB key that came with the programming interface.

If you do not have the installation CD or USB key and know where to find the drivers, check off “Include this location in the search:” and browse for the driver on your computer or network. You can uncheck “Search removable media (floppy, CD-ROM…)” to save time in this case.
Once you click “Next” the following screen will appear until the operating system has found the appropriate driver.

![Driver Installation - Driver File Search](image)

Figure 35 Driver Installation - Driver File Search

Once the correct driver has been found, it will install automatically and the completed screen should appear. Simply click the “Finish” button to complete the driver installation.

6.2.2 Configuration Application Installation

Click on the “Install RMU1 Configuration Application” button to start the application installer. A security warning dialog may appear. Click the “Run” button to continue.

The following dialog should now appear:

![RMU1 Configuration Application Installation Dialog](image)

Figure 36 RMU1 Configuration Application Installation Dialog

Follow the instructions presented in the installation screens, clicking “Next” to move to the next screen each time. Some screens may pause for tens of seconds as the Windows installation procedure is processing. The final screen should show the screen in Figure 37. Click “Close” to complete the installation.

![RMU1 Configuration Application Installation Complete](image)

Figure 37 RMU1 Configuration Application Installation Complete
A shortcut to the configuration application and the RMU1 manual are created in the Windows start menu under the “RMU1 Configuration Application” folder.

6.2.3 Adobe Acrobat Reader XI

Adobe Acrobat Reader XI is provided on the CD to allow viewing of the PDF version of the RMU1 manual. If Acrobat Reader is already installed on the PC, it is not necessary to re-install it. To install Acrobat Reader, click on the “Install Adobe Acrobat Reader XI” button on the RMU1 Installer dialog, and follow the instructions provided by the Acrobat Reader installation application.

6.3 RMU1 Configuration

Attach the supplied USB cable between the PC and the programming interface. Place the programming interface on the RMU1 unit as shown in Figure 38. The programmer alignment plate will wedge between the green terminal block and the body of the RMU1.

![RMU1 Programming Interface Installation](image)

Figure 38 RMU1 Programming Interface Installation

Start the configuration software by clicking on “RMU1 Configuration” shortcut in Windows start menu, under the “RMU1 Configuration Application” folder. If the programmer is not connected to one of your USB ports, you will get an error message. Simply connect the USB cable to the computer and try again. The following screen will appear.
Next, attach the programming interface to the RMU1 that requires programming.

The first step in configuring a device is to read in the current settings from the unit. Click on “Read Config From RMU1”. The “Link Status” field will briefly show “Busy” as the current configuration parameters are read from the RMU1. After the link status returns to “Idle”, you will see the configuration settings currently in the RMU1. If the RMU1 is not responding or not connected, an error dialog will pop up.

Once communications have been established with the RMU1, the RMU1 parameters can be configured for the requirements of a particular installation site.

6.3.1 RMU1 Communications and Status

“RMU1 Communications and Status” is used for reading and programming the RMU1. It also displays some status information.

6.3.1.1 Link Status

This field has three settings:

- **Disabled** – Serial port is not connected to the programmer
- **Idle** – Programmer is connected but there is no activity
- **Busy** – Programmer is trying to communicate with the RMU1

6.3.1.2 Firmware Version

This field contains the version number of the application code installed in the main processor of the RMU1.

6.3.1.3 Serial#

The manufacturing serial number of the RMU1 is indicated in this field.

6.3.1.4 Read Config From RMU1

This is used to get the current values configured in the RMU1. Note, if you have changed the values in any of the configuration groups, the changes will be over written by pressing this button.
6.3.1.5 Write Config To RMU1
Once all the configuration settings are set to the appropriate specifications, the unit can be configured by pressing the “Write Config to RMU1” button. The write can be confirmed by pressing the “Read From RMU1” button to ensure the values are the same.

6.3.1.6 Defaults
The RMU1 contains factory defaults that can be loaded using this button. This allows for easy return of a unit to a known state. “Write Config to RMU1” must be pressed to write the parameters to the active configuration in the RMU1. The programming interface must be attached to the RMU1 for this function to operate.

6.3.1.7 Set RMU1 Clock
When the GPS receiver is disabled in the configuration, the clock on the RMU1 may be updated from the PC using this button. Note that the RMU1 clock setting is lost whenever the RMU1 is powered down up unscrewing the lid.

6.3.1.8 Read Faults
If the RMU1 detects an operational fault, it will record the event in memory. Clicking the ‘Read Faults’ button will retrieve this history for display. The fault history may be cleared by clicking the ‘Clear Fault History’ button in the displayed dialog.

Figure 40 Faults Dialog

6.3.1.9 Detailed Status
Clicking the ‘Detailed Status’ button will display a dialog (see Figure 41) with detailed RMU1 information. The display is broken into several areas including GPS, communications, battery, faults, real time clock, and calibration. In the event that a problem is encountered with the operation of the RMU1, Mobiltex may request a screen shot of this dialog to aid in diagnostics.

The ESN shown in the comms status area is the value used by corView to track communications with the device.
6.3.1.10 Cap Detect Calibration

The RMU1 is equipped with a non-contact sensor (see Figure 43) that can detect when a test station cap is installed over the RMU1. This sensor may require calibration to operate correctly. In the event that a cap is not detected properly, click the ‘Cap Detect Calibration’ button. The following dialog will pop up.
Click the ‘Auto-Set Threshold’ button while the test station cap is not installed. Ensure that nothing is obscuring the proximity sensor window on the RMU1. A new threshold value will be determined based on the current sense levels. The new threshold will become active immediately after clicking the ‘OK’ button on the dialog. Pressing ‘Cancel’ will revert to the prior threshold levels.

During normal operation, ensure that no wiring or any other objects are blocking the proximity sensor window from being able to ‘see’ the test station cap when it is installed.

Figure 43 RMU1 Cap Proximity Sensor

6.3.1.11 Extract Datalogger Mem
The ‘Extract Datalogger Mem’ button allows readings stored in the internal memory to be extracted to a comma-separated-value (CSV) file format that can be used with a spreadsheet application. This function requires the factory-enabled datalogger option be present on the RMU1.

After clicking the button, the contents of the datalogger memory will be transferred from the RMU1. After the transfer is completed, a prompt will appear for the target file name. The resulting file may be opened for analysis in various applications that support the CSV format.

6.3.1.12 Clear Datalogger Mem
The ‘Clear Datalogger Mem’ button allows the RMU1 datalogger memory to be reset back to a blank state. This function requires the factory-enabled datalogger option be present on the RMU1.

After clicking the button, a confirmation prompt will appear. If confirmation is given, then a progress display will be shown as the RMU1 memory is erased.

6.3.1.13 Test Transmission
A test message can be sent to corView by clicking on the ‘Test Transmission’ button. The RMU limits the number of test transmissions possible to six in a 12 hour period. Subsequent test transmission attempts will be ignored.

6.3.1.14 Reboot RMU1
Click the ‘Reboot RMU1’ button to restart the RMU1.

6.3.2 Measurement Type
Select the measurement type according to the installation application of the RMU1. Refer to section 5.2 for detailed descriptions of each measurement type.
6.3.3 Measurement slots Configuration

The RMU1 is capable of transmitting 6 slots of analog information to corView. The contents of each slot is determined by the selected measurement type. Refer to section 5.2 for detailed descriptions of each measurement type, including the information transported in each slot. A description of each data slot is also provided in the ‘Readings’ area of the configuration screen.

Each data slot may have the following attributes modified:

- The slot may be disabled if the measurement is not needed
- Low and high limit alarms may be set
- The reading taken at the physical inputs may be scaled and offset for transmission
- The input range may be selected for current inputs
- The data slot analog measurement may be replaced with the isolated digital input state

The following ranges apply to coupon current and bond shunt measurements:

<table>
<thead>
<tr>
<th>Measurement Type</th>
<th>Low Range</th>
<th>Med Range</th>
<th>High Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coupon Current</td>
<td>+/-6mADC, 4.25mAAC</td>
<td>+/-60mADC, 42.5mAAC</td>
<td>+/-200mADC, 140mAAC</td>
</tr>
<tr>
<td>Bond Shunt</td>
<td>+/-6mVDC, 4.25mVAC</td>
<td>+/-60mVDC, 42.5mVAC</td>
<td>+/-200mVDC, 140mVAC</td>
</tr>
</tbody>
</table>

A convenient coupon calculator is provided for setting the scaling factor when coupon current density or bond current is desired instead of raw current measurements.

6.3.4 Depolarization (CP33 and CP38 Measurement Types Only)

Depolarization may be enabled in single coupon mode. Depolarization parameters allow the RMU1 to disconnect the coupon from the structure for configurable amounts of time at periodic intervals. Coupon potential readings taken at the end of depolarization cycle (assuming long enough disconnect duration is configured) will be equivalent to a native coupon potential reading.

The ‘Initial Delay’ parameter sets how long, in days that the RMU1 will wait after a power-up before initiating the first depolarization cycle. When set to a value of 0, the RMU1 will wait one wakeup cycle (6 hours) before disconnecting the coupon.

The ‘Interval’ parameter sets how often a depolarization cycle occurs.

The ‘Duration’ parameter set how long the coupon is disconnected from the structure for each depolarization cycle. The duration parameter must be less than the interval parameter.

6.3.5 Periodic Report Interval

The periodic report interval determines how often the RMU1 will send scheduled readings to corView. This parameter is normally locked down at the factory according to the purchased airtime plan.

For 1 hour reporting plans, an extra option labelled ‘Enh. Message Reliability’ is present that is only applicable to the RMU1-S. To increase battery life, this option should be left unchecked. However, if the unit is installed in a challenging RF environment and message loss is apparent, then the option should enabled.

Note that the RMU1-I and RMU1-G will collect readings at a different rate than the transmission rate for readings periods less than a day. For example, units that take periodic readings every hour will transmit a batch of 12 readings every 12 hours. Similarly, units that take periodic readings every 6 hours will transmit a batch of 4 readings every 24 hours. If satellite/cellular coverage is inadequate for successful data transmission at the scheduled time, the unit will continue to accumulate readings and try to send the data at a later periodic reading interval. The RMU1-I/G is able to buffer up to 16 readings for transmission; if the unit is unsuccessful at sending the readings to corView at that point, the oldest reading in the buffer will be discarded to make room for the next periodic reading measurement.
6.3.6 Options

Several options are available that affect the operation of the RMU1.

The ‘Enable Cap Report’ option allows the RMU1 to send an exception report to corView whenever a transition is detected on the cap detection sensor. The cap detection sensor is an infrared proximity sensor unit that detects an installed cap by the amount of infrared light reflected by the cap. If this option is enabled, every time the cap is removed or installed, a reading set will be taken and sent to corView. As with other exception messages, a maximum of 6 messages can be sent in a given 12 hour window; any additional transitions will be ignored. This feature requires airtime Option 2 – “Add cover removal exception reports to any plan” (RMU1OPTION2).

The ‘Disable Cap Detector’ option disables the cap infrared proximity sensor. This option is typically used to increase battery life on the RMU1. When cap detector is disabled, the LCD display will not turn on if the test station cap is removed. To temporarily turn on the LCD when this option is checked, apply a magnet near the green measurement terminal block.

‘Enable Datalogger’ allows readings to be stored to local non-volatile memory. This option is usable only if the factory datalogger option (Option 3) is enabled on the RMU1. The stored readings can be extracted by using the ‘Extract Datalogger Mem’ button under the ‘RMU1 Communications and Status’ area. The datalogger memory will hold approximately 174,000 readings sets before filling. At a 1 hour measurement rate, approximately 20 years of measurement data can be stored locally.

‘Enable AC Peak Current Detector’ enables the AC peak current density detector mode on the RMU1. Firmware v1.10 or higher is needed. When enabled, the RMU1 will, while sleeping, sample the coupon current density at set intervals (default 20s) and trigger a unit wake-up and full measurement if the sampled AC current density value is above the associated slot high limit (must be set for operation). If activated, short AC transients (<30s) can be captured by the RMU1 and exception messages sent to corView. When the signal again drops below the threshold value, the RMU1 requires a minimum amount of time (default 5 min) of signal below threshold before a clear exception is sent to corView. Exception message counts are limited in manner similar to the cap detector function. This feature requires RMU1 Option 5 to be purchased for operation. The peak detector is inoperative while the RMU1 programming interface is attached. This option is not available with the RMU1-S.

‘Enable Digital Input Report’ causes an exception report to be sent to corView when the state of the isolated digital input changes. As with other exception messages, a maximum of 6 messages can be sent in a given 12 hour window; any additional transitions will be ignored. This feature requires airtime Option 4.

‘Invert Digital Input’ inverts the reported state of the digital input.

‘Digital Input Replaces Cap Detector’ allows the digital isolated input to replace the cap state information that is transmitted to corView. The digital input state would then be shown in corView as the cap state.

The ‘Disable GPS’ option turns off the RMU1 automatic location determination and real-time clock synchronization. The GPS receiver could be disabled for several reasons. The first reason is to maximize battery life. The second use would be if the RMU1 is installed in a location that does not have sufficient GPS coverage to attain a position lock. An example would be if the RMU1 is installed in a metal box or other challenging RF environment. This option is not applicable to the RMU1-S.

When the ‘Disable GPS’ option is checked, the latitude and longitude co-ordinates of the RMU1 should be entered into the appropriate boxes below the option check mark. This will allow the location of the RMU1 to still be transferred to corView for use with mapping functions. In addition, the ‘Set RMU1 Clock’ button should be clicked after configuration is complete to set the internal real time clock.

The ‘Instant Disc. Offset’ parameter is used to adjust the delay between the disconnect of a coupon from the structure and when the acquisition of the instant disconnect potential is performed. Typically this value is left as low as possible while still mitigating the effects of relay chatter that occur during the contact disconnect process.

6.3.7 Readings

The ‘Readings’ group provides for the ability to validate the configuration of RMU1. Clicking the ‘Update’ button will request that the RMU1 perform a new conversion cycle on all of the readings slots (except depolarized coupon potential). A reading update will typically take under 15 seconds to complete.
7 Mobile Device Configuration

The RMU1 may also be programmed with a compatible iOS or Android-based mobile device when an RMU1PGM-BT Bluetooth Interface cable is used. The RMU1PGM-BT cable (Mobiltex P/N A1506032701 shown in Figure 44) uses Bluetooth Smart (BLE) to enable a wireless connection to a compatible mobile device. The programming cable is also available as part of kit (Mobiltex P/N A20A0332701) that includes a carrying case and a USB battery pack. Note that only RMU1PGM cables with a black USB cable have Bluetooth capability; RMU1PGM cables with a white USB cable are not Bluetooth capable.

Figure 44 RMU1PGM-BT Bluetooth Interface Cable

An RMU1/2/3 Programming Interface with the RMU1ADP cable (Kit A20A0333101) attached may also be used.

Figure 45 RMU1/2/3 Programming Interface With RMU1ADP

The mobile device must have the RMU1Config mobile app loaded from either the Apple App store or the Google Play store, as applicable. Simply search for ‘RMU1’ on each site to locate the download. Alternatively, use the following direct links:

https://itunes.apple.com/us/app/rmu1-config/id1232422915 (Apple iOS)

The iOS app is compatible with any Apple device that has Bluetooth Smart (BLE) capabilities—for the iPhone, model 4S or higher. A list of compatible devices is on the App Store.

The Android app is compatible with any Android device that has Bluetooth Smart (BLE) capabilities and is running Android 4.4.2 or higher. Refer to your device specifications to determine Bluetooth capabilities.

With the RMU1PGM-BT or RMU1/2/3 Programming Interface and the app, the need for a PC is eliminated. All configuration functions can be performed with the iPhone/iPad through the RMU1PGM-BT cable via a wireless Bluetooth connection. One limitation with the mobile app is that the datalogger on the RMU1 cannot be extracted; this is due to a speed limitation over the Bluetooth Smart connection.

For use with the Bluetooth connection, a portable USB battery pack is needed to power the RMU1PGM-BT interface cable or RMU1/2/3 Programming Interface. Prior to using the USB battery pack, charge the pack using a micro-USB to USB-A cable and a USB power source (see Figure 46, actual battery pack form factor and dimensions may differ from picture). Before use, charge for 10 hours or until the pack charge indicator shows full. A fully charged 3000mAh
pack should allow over 60 hours of continuous operation for the RMU1PGM-BT cable or RMU1/2/3 Programming Interface.

Figure 46 RMU1PGM-BT USB Battery Pack Charging

Connect the RMU1PGM-BT or RMU1/2/3 Programming Interface USB connector into the matching connector on the battery pack. Some battery pack models may have a button that needs to be pressed to activate the power output. The ‘PGM POWER’ LED on the RMU1PGM-BT or ‘PWR’ LED on the RMU1/2/3 Programming Interface should light green when power is being delivered to the device. Place the RMU1PGM-BT on the RMU1 as shown in the Figure 47. The RMU1/2/3 Programming Interface with RMU1ADP cable attaches in a similar fashion.

Figure 47 RMU1PGM-BT Connected To Battery Pack and RMU1

Once the cable is attached between the portable USB battery pack and the RMU1, the app on the mobile device is started. A connect button in the app initiates the process to connect with the programming interface. A list of active interface cables in the area is brought up; each interface cable has a serial number label on it to identify the unit. Once the unit is selected, if it is the first connection attempt between the portable device and that interface cable, a pop-up will show up requesting a pairing code. The default pairing code is ‘123456’ (this can be changed).

After the connection is established, capabilities are similar to the PC application, the configuration can be read, modified and written and status information can be polled. Figure 48 shows some sample screenshots from the iOS app; the Android app is similar in appearance.
Upon completion of configuration, disconnect the RMU1PGM-BT cable or RMU1/2/3 Programming Interface from the battery pack to conserve charge in the pack.
8 Battery Replacement

1. Remove the RMU1 from its mounting location.

2. Unscrew and remove the top plastic circular lid from the RMU1.

3. Remove the three screws that secure the transmitter board assembly to the unit as indicated in the pictures below. Set aside the three screws and transmitter board for re-assembly after the batteries have been changed.

4. Remove the old batteries by popping them out of the battery clips. Install four new AA batteries from the replacement battery kit (Mobiltex P/N B02221RMU10). The batteries are oriented according to the polarity markings shown on the main RMU1 logic circuit board.
5. Re-attach the transmitter board. Make sure that the main PCB alignment tabs engage the matching slots in the antenna board. Then, re-install the previously removed three screws. Do not over-tighten the screws.

6. Re-install the plastic circular lid.

7. Re-install the RMU1 as instructed in section 5.1.

No other maintenance or cleaning is required.
9 Technical Support

Technical assistance may be obtained from:

Mobiltex Data Ltd.
3640-26th Street NE
Calgary, AB T1Y 4T7
Canada
Tel: (403)291-2770
Web: http://www.cortalk.com
Service Email: service1@mobiltex.com
Service Website: http://service.mobiltex.com
A. Equipment Specifications

RMU1 Specifications

- **Operating Temperature**: -40° to +60°C (-40° to +140°F)
- **Storage Temperature**: -45° to +80°C (-49° to +176°F)
- **Maximum Altitude**: 5000 meters above sea level
- **Humidity**: 0 to 100% RH non-condensing
- **Weight**: 225 grams (0.5 lbs)
- **Size**: 80mm x 80mm x 110mm (3.15”x3.15”x4.33”)
- **Enclosure**: UV stable, wide temperature polycarbonate
- **Pollution Degree**: 1
- **External Analog Channels**: 2 potential, 1 bond shunt, 1 coupon current
- **Measurement Type**: Category 1 (as per CSA C22.2 – 61010)
- **Analog Ranges (DC & AC True RMS)**:
 - Potential: +/-31VDC, 22VAC
 - Current: +/-6mADC, 4.25mAAC Low Range
 - +/-60mADC, 42.5mAAC Med Range
 - +/-200mADC, 140mAAC High Range
 - Bond Shunt: +/-6mVDC, 4.25mVAC Low Range
 - +/-60mVDC, 42.5mVAC Med Range
 - +/-200mVDC, 140mVAC High Range
- **AC Rejection on DC Readings**: >65dB @ 50/60Hz
- **Isolated Digital Input**: +/-100VDC maximum
 - <-3VDC or >3VDC for activation (bi-directional sense)
 - Optically isolated (2500VRMS)
- **Lightning Immunity**: Survives multiple 20KV 10mS surges
- **DC Measurement Accuracy (over operational temperature)**:
 - Potential: +/-1% + 1mV
 - Current: +/-0.75% + 10uA Low Range
 - +/-0.5% + 15uA Med Range
 - +/-0.5% + 35uA High Range
 - Bond Shunt: +/-0.75% + 2uV Low Range
 - +/-0.5% + 5uV Med Range
 - +/-0.5% + 15uV High Range
- **AC Measurement Accuracy (over operational temperature)**:
 - Potential: +/-1.25% + 5mV, 20mV floor
 - Current: +/-1% + 5uA, 5uA floor Low Range
 - +/-1% + 15uA, 50uA floor Med Range
 - +/-1% + 50uA, 150uA floor High Range
 - Bond Shunt: +/-1.1% + 25 uV, 5uV floor Low Range
 - +/-1.1% + 35 uV, 50uV floor Med Range
 - +/-1.1% + 75uV, 150uV floor High Range
- **Input Impedance**: >20 Mohm (potential)
 - 130 Kohm (bond current shunt)
- **Coupon Current Shunt**: 1 ohm
- **ADC Resolution**: 16 bits
- **Temp. Measurement Accuracy**: +/-4°C (+/-7°F) over -40° to +60°C (-40° to +140°F)
- **Battery Life**: Typically 10 years based on readings every 7 days
- **Internal Battery Measurement**: OK, Warning and Low conditions displayed on corView
- **Communications**:
 - Globalstar Simplex Satellite (RMU1-S)
 - Iridium SBD Satellite (RMU1-I)
 - Cellular UMTS B2,5 and LTE B2,4,5,12,13 (RMU1-G)
- **GPS Receiver**: 72-channel u-blox M8
- **Datalogger Storage** (Factory Enabled Option): 1 million reading points
B. RMU1-S Globalstar Simplex Satellite Coverage Map
C. RMU1-I Iridium SBD Satellite Coverage Map

Iridium offers complete pole-to-pole coverage in all areas of the Earth due to its cross-linked polar orbiting constellation.
D. RMU1 Regulatory Statements

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy, and if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment OFF and ON, the user is encouraged to try to correct the interference by one or more of the following measures:

• Reorient or relocate the receiving antenna.
• Increase the separation between the equipment and receiver.
• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
• Consult the dealer or an experienced radio/TV technician for help.

WARNING: Changes or modifications not expressly approved by Globalstar may render the device non-compliant to FCC and other regulatory body standards for operation and may void the user’s authority to operate the equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

This ClassA/ClassB digital apparatus complies with Canadian ICES-003.

NOTICE: This equipment complies with the FCC RF Exposure Limits. A minimum of 20 centimeters (8 inches) separation between the device and the user and all other persons should be maintained.

RMU1-S
FCC ID: L2V-STX3
IC:3989A-STX3

RMU1-I
FCC ID: Q639603N
IC:4629A-9603N

RMU1-G
FCCID: R17LE910NAV2
IC: 5131A-LE910NAV2

Complies with FCC standards.
FOR HOME OR OFFICE USE